Yeah, that’s going to be too hard. I only have two SiPMs (besides the current detector) and they are expensive. I figured I could maybe rely on the gamma from the annihilation energy being a quite different energy than the gammas from the more common electron-capture.
However you raise a good point that that would not be a very good demonstration of positron annihilation at all – just evidence that it’s not the other 2 decay modes (and it would take ages to collect that evidence besides). Ah well. Got plenty of other science I can do instead.
Probably I’ll tackle something easier like checking for radon decay products in petrol.
I mean yeah, in principle I could cram textbooks for a few months (I know EE and SE pretty well, but particle physics only very basic stuff), order parts made at the factories I know, and would probably succeed eventually. More realistically I’d have to hire a university prof as a consultant to save time.
What I am really unable to construct is a powerpoint presentation that justifies that expense and labor to management :P
Especially in a cost-driven market (my company is in Vietnam). Often the parts for these things are export-controlled too, that can be a real pain. I’ve gotten irate phone calls from the US DoD before over fairly innocent parts orders – it’s not super fun. I recall it was some generic diode, I must have stumbled on something with a military application I wasn’t aware of. The compliance paperwork ended up costing me hundreds of dollars for 20$ in parts, too.
Anyway, if it was something I could just tack on to ongoing research projects, I could maybe get away with it as a marketing expense. It’s for a STEM program. It’s hard enough to convince management to take the risk on a nuclear & quantum module as-is! I can mostly get away with it because the locally-manufactured beta-detectors cost like 20$ per classroom.
the trickery is to detect two gammas emitted simultaneously in exactly opposite directions
Yeah, that’s going to be too hard. I only have two SiPMs (besides the current detector) and they are expensive. I figured I could maybe rely on the gamma from the annihilation energy being a quite different energy than the gammas from the more common electron-capture.
However you raise a good point that that would not be a very good demonstration of positron annihilation at all – just evidence that it’s not the other 2 decay modes (and it would take ages to collect that evidence besides). Ah well. Got plenty of other science I can do instead.
Probably I’ll tackle something easier like checking for radon decay products in petrol.
that’s how real commercial PET scanners work, so it’s not too hard to make it work
‘Not too hard’ is a bit of a spectrum I guess ;)
I mean yeah, in principle I could cram textbooks for a few months (I know EE and SE pretty well, but particle physics only very basic stuff), order parts made at the factories I know, and would probably succeed eventually. More realistically I’d have to hire a university prof as a consultant to save time.
What I am really unable to construct is a powerpoint presentation that justifies that expense and labor to management :P
Especially in a cost-driven market (my company is in Vietnam). Often the parts for these things are export-controlled too, that can be a real pain. I’ve gotten irate phone calls from the US DoD before over fairly innocent parts orders – it’s not super fun. I recall it was some generic diode, I must have stumbled on something with a military application I wasn’t aware of. The compliance paperwork ended up costing me hundreds of dollars for 20$ in parts, too.
Anyway, if it was something I could just tack on to ongoing research projects, I could maybe get away with it as a marketing expense. It’s for a STEM program. It’s hard enough to convince management to take the risk on a nuclear & quantum module as-is! I can mostly get away with it because the locally-manufactured beta-detectors cost like 20$ per classroom.