In the case of military vehicles, hydrogen is about the greenest option that we’re gonna get. No one is going to make a battery powered AFV, because where the fuck would you charge it?
If you ignore the fragility (creates a weak point to disable the tank) and the slow charging rate, dust and debris from firefights would be a pretty big issue.
Right, but you are going to want to choose a fuel that has the least chance of flaming up if you’re making a military vehicle.
Hydrogen has (compared to petroleum) a Wider Flammability Range, Lower Ignition Energy (0.02 millijoules) which is really low and much smaller than petroleum, and a higher diffusion rate.
Right, but you are going to want to choose a fuel that has the least chance of flaming up if you’re making a military vehicle.
Why? If something has gotten through the armour, your fuel is the least of your worries. I mean you are sitting next to a stack of shells filled with high explosives.
Wasn’t trying to call you out for being wrong or only partially correct, just think it’s neat all the stuff they considered when designing and testing it.
Sounds crazy at first but comes with some good advantages: it can cross rivers as it doesn’t need air for combustion, it’s silent, and you can load it anywhere at the battle field if you have solar panels, time and sun. Still you can rely on military logistics to carry a swap battery. But isn’t the military supply chain the first target to disrupt? My two cents, this is the next thing at battle fields.
Oh, and if all your equipment runs on electricity, you can load and reload power at your needs. Tank needs power but car not? Combat robot out if power and car is full? Transfer the power
I’m not super familiar with the matter, but what do you mean by “going the way of the battle ship”? Do you mean they’re becoming more obsolete because of their size/utility compared to drones?
Honestly if MILITARY applications are what kicks renewable energy and mass storage into high gear, I won’t be surprised, but I will be disappointed.
But hey, improvement is still improvement and if a military organization sees renewable as the future, they’re gonna try to make sure they get there first. As long as whoever gets there shares the progress with the rest of the world, I’m okay with it.
But who am I kidding, it’s gonna be China or the US and the rest of the world won’t see shit for decades due to suppression of research and technology that would allow for similar specs to be achieved privately…
… How credible is my aluminum foil hat guy?
I must admit though, it’d be cool to see an armored combat battery sliding across a field to quick charge a tank that died mid-battle. 10 seconds of charging to get it up and running, and the battery moves to the next low power thing. I’m imagining a semi-autonomous hot-swap of a battery compartment and eventually recharging like modern airplane mid-air refueling. Insert Rod A into Slot A and wait a little bit. The faster they want it to charge, the more they’ll dump into R&D.
Just wait some years - they have solid state batteries close to industry ready. That means huge increase in capacity and no issues with temperature.
Next stage will be structural batteries where you take the structure as battery. For a tank that means all the armour will be charged and work as battery. Just a matter of years.
Loading time is solved already. It’s a matter of battery temperature while infusing power and solved by battery management software.
Any idea why the Boston Dynamics robots aren’t on a battle field? I mean the do incredible stunts. It‘s the battery. Lasts for around 2-3 hours. Today. Military is working on that, I‘m pretty sure.
Still you can rely on military logistics to carry a swap battery. But isn’t the military supply chain the first target to disrupt?
That’s true as well for hydrogen, though. And I guess there’s a higher chance of getting access to “power” somewhere in the field than finding a hydrogen tank. Also, energy density of lithium batteries is higher than for hydrogen storage.
In the case of military vehicles, hydrogen is about the greenest option that we’re gonna get. No one is going to make a battery powered AFV, because where the fuck would you charge it?
Just put solar panels on top, easy.
If you ignore the fragility (creates a weak point to disable the tank) and the slow charging rate, dust and debris from firefights would be a pretty big issue.
Isn’t hydrogen even more flammable and explosive than petroleum. Just seems like a dumb idea to put that in a military vehicle.
Yes, obviously, putting explosives and projectile propellants in an armored vehicle is dangerous and should be avoided
/s
OSHA is not a credible military threat
Right, but you are going to want to choose a fuel that has the least chance of flaming up if you’re making a military vehicle.
Hydrogen has (compared to petroleum) a Wider Flammability Range, Lower Ignition Energy (0.02 millijoules) which is really low and much smaller than petroleum, and a higher diffusion rate.
All of which make it more likely to go kaboom.
Why? If something has gotten through the armour, your fuel is the least of your worries. I mean you are sitting next to a stack of shells filled with high explosives.
Well if the fuel is compromised there’s a larger chance it’ll ignite and reach the shells if it’s hydrogen as opposed to petroleum.
Silly one, and but do tanks run on diesel?
Every other heavy machine I can think of typically uses diesel for their engines: tractors, lorries, boats.
Also diesel is less flammable then petrol or hydrogen in the event of a spill of leak…
Diesel is a type of petroleum product.
The Abrams uses jet fuel mainly. But most tanks are diesel.
The Abrams can run on just about anything liquid and flammable. It’s not gonna be happy about it, but it’ll go.
I think it was designed by pakleds…
Yup, that’s why I put “mainly”
Wasn’t trying to call you out for being wrong or only partially correct, just think it’s neat all the stuff they considered when designing and testing it.
Sir this is NCD. That comment is far too credible.
Shit I never saw I was in a meme sub lmao. To be fair the comments above mine seemed mostly serious.
Some of the best serious conversations get started by meme posts.
Would you say that we (wiggles eyebrows) subverted your expectations?
You’d probably want a quick swap battery and charging far from the front lines.
Who if not the Germans built an electric tank in 2020 https://efahrer.chip.de/news/geraeuschlose-einsaetze-weltweit-erster-elektro-panzer-kommt-aus-deutschland_103179
Sounds crazy at first but comes with some good advantages: it can cross rivers as it doesn’t need air for combustion, it’s silent, and you can load it anywhere at the battle field if you have solar panels, time and sun. Still you can rely on military logistics to carry a swap battery. But isn’t the military supply chain the first target to disrupt? My two cents, this is the next thing at battle fields.
Oh, and if all your equipment runs on electricity, you can load and reload power at your needs. Tank needs power but car not? Combat robot out if power and car is full? Transfer the power
Any reasonably sized pv installation near a battlefield will definitely not look suspicious on reconnaissance images.
You think less suspicious than these huge petrol storages in a city?
PV can be dismantled, if needed. I bet it’s even cheaper to replace when destroyed compared to petrol storage. Anyway, future will tell
Tanks are going the way of the battle ship though. Drones are doing a lot of the stuff they can do, and a lot of things they can’t.
I’m not super familiar with the matter, but what do you mean by “going the way of the battle ship”? Do you mean they’re becoming more obsolete because of their size/utility compared to drones?
That, and expense. Tanks cost millions, while a $5k drone with an RPG strapped to it can take it out and exploit the weak spots.
Honestly if MILITARY applications are what kicks renewable energy and mass storage into high gear, I won’t be surprised, but I will be disappointed.
But hey, improvement is still improvement and if a military organization sees renewable as the future, they’re gonna try to make sure they get there first. As long as whoever gets there shares the progress with the rest of the world, I’m okay with it.
But who am I kidding, it’s gonna be China or the US and the rest of the world won’t see shit for decades due to suppression of research and technology that would allow for similar specs to be achieved privately…
… How credible is my aluminum foil hat guy?
I must admit though, it’d be cool to see an armored combat battery sliding across a field to quick charge a tank that died mid-battle. 10 seconds of charging to get it up and running, and the battery moves to the next low power thing. I’m imagining a semi-autonomous hot-swap of a battery compartment and eventually recharging like modern airplane mid-air refueling. Insert Rod A into Slot A and wait a little bit. The faster they want it to charge, the more they’ll dump into R&D.
Just wait some years - they have solid state batteries close to industry ready. That means huge increase in capacity and no issues with temperature.
Next stage will be structural batteries where you take the structure as battery. For a tank that means all the armour will be charged and work as battery. Just a matter of years.
Loading time is solved already. It’s a matter of battery temperature while infusing power and solved by battery management software.
Any idea why the Boston Dynamics robots aren’t on a battle field? I mean the do incredible stunts. It‘s the battery. Lasts for around 2-3 hours. Today. Military is working on that, I‘m pretty sure.
Carrying volatile chemical energy on the outside of your tank seems somewhat unwise.
There are other types of batteries that don’t involve volatiles, like water batteries or metal-air batteries.
That’s true as well for hydrogen, though. And I guess there’s a higher chance of getting access to “power” somewhere in the field than finding a hydrogen tank. Also, energy density of lithium batteries is higher than for hydrogen storage.